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COMPACTIFYING COVERINGS
OF CLOSED 3-MANIFOLDS

JOEL HASS, HYAM RUBINSTEIN AND PETER SCOTT

Let M be a closed P2-irreducible 3-manifold with infinite fundamental
group. It is a longstanding conjecture that the universal cover of M must
be homeomorphic to R3. Waldhausen [17] proved that this is the case
where M is Haken. (See Heil’s paper [5] for the nonorientable case.) The
first result of this paper is the following generalization of Waldhausen’s
result.

Theorem 1.1. Let M be a closed P?-irreducible 3-manifold. If n,(M)
contains the fundamental group of a closed surface other than S? or PZ,
then the universal cover of M is homeomorphic to R>.

We will say that a 3-manifold is a/most compact if it can be obtained
from a compact manifold N by removing a closed subset of 8. Then
Theorem 1.1 is equivalent to the assertion that the universal covering of
M is almost compact. A natural way in which to attempt to generalize
Theorem 1.1 is to show that other coverings of M are almost compact. It
was conjectured by Simon [14] that if M is any compact P2-irreducible 3-
manifold, and M, is a covering of M with finitely generated fundamental
group, then M; must be almost compact. Simon verified this conjecture
for the case where 7 (M) is the fundamental group of a boundary compo-
nent of M. Jaco [6] generalized this to the case where 7 (M) is a finitely
generated peripheral subgroup of n;(M). More recently, Thurston [15]
showed that if M admits a geometrically finite complete hyperbolic struc-
ture of infinite volume, then Simon’s conjecture is true. Finally, Bonahon
[1] showed that any hyperbolic 3-manifold M with finitely generated fun-
damental group is almost compact provided 7; (M) is not a free product.

The second result of this paper is the following.

Theorem 2.1. Let M be a closed P2-irreducible 3-manifold such that
n1(M) contains a subgroup A isomorphic to Z x Z. Then the covering of M
with fundamental group A is almost compact.

Received March 15, 1988.



818 JOEL HASS, HYAM RUBINSTEIN AND PETER SCOTT

If Af is Haken then the conclusion of the theorem follows immediately
from Simon’s work [14]. The crucial condition needed in [14] is that if
H is any finitely generated subgroup of 7;(M), then H N A4 is also finitely
generated; this obviously holds, as A is isomorphic to Z x Z. If M is not
Haken, then the version of the Torus Theorem proved by Scott [13] shows
that some infinite cyclic subgroup of 4 must be normal in 7;(M). Now
the following is another long standing conjecture.

Conjecture. If M is a closed P*-irreducible 3-manifold such that (M)
contains an infinite cyclic normal subgroup, then M is a Seifert fiber space.

If M is a Seifert fiber space, then Theorem 2.1 is easily proved. Thus the
interest of Theorem 2.1 is that we do not assume that M is either Haken
or a Seifert fiber space. We hope that our result will be a step towards
proving the Conjecture.

1. The universal cover

In this section,we prove the following theorem.

Theorem 1.1. Let M be a closed P2-irreducible 3-manifold. If n\(M)
contains the fundamental group of a closed surface other than S* or P? then
the universal cover of M is homeomorphic to R3.

We start by noting that if M is Haken, then the result was proved by
Waldhausen {17] and Heil {5]. Thus throughout this section we will as-
sume that M is not Haken. In particular, M must be orientable, as a
nonorientable closed 3-manifold must have infinite first homology group
and so be Haken [3].

Let F be a closed surface not S? or P? such that z; (M) contains 7, (F).
Letf: F — M be a map inducing the inclusion of 7;(F) in 7;(M). We
can assume that f is 2-sided, i.e., has trivial normal bundle, by replacing
F by its orientable double cover if necessary. We want to choose f to
be “least area”. This can be done in the smooth category by picking a
Riemannian metric on M and applying the theorem of Schoen and Yau
[12] which asserts the existence of a map homotopic to f of least area.
Alternatively, one can triangulate M and take a normal map homotopic to
S of least possible weight as in the paper [7] of Jaco and Rubinstein. We
will take the first approach, but the second approach will yield the same
results by essentially identical arguments.

Now let f: F — M be of least area in its homotopy class. Then f
is a smooth immersion, but it need not be in general position. Let M
denote the universal covering of M. Results of [3] and [4] show that the
preimage in M of f(F) consists of area minimizing embedded planes. (A
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surface is area minimizing if any compact subsurface is least area in its
homotopy class rel boundary.) Further, if f is in general position, then
these planes are also in general position and the intersection of any pair of
planes has no circle components. A family of planes embedded in M with
these two properties will be called simple. If f is not in general position,
then, of course, the preimage planes in Af are also not in general position,
but the methods of Lemma 1.6 of [3] show that f can be perturbed to
a general position map f’ for which the preimage in M is again a simple
union of embedded planes. We conclude that in all cases there is a smooth
immersion f: F — M such that the preimage in M of f(F) is a simple
union of embedded planes. This is the only property of f which we will
use, so that, from now on, it will be irrelevant whether or not f is of least
area.

Let T denote any simple union of embedded planes in M. We will need
some preliminary results about X.

Lemma 1.2. Each component of M — X is simply connected.

Remark. When f is a least area map and X is the preimage of f(F),
then the planes of ¥ are area minimizing by results of [4]. It is natural
to suppose that if A is a loop in M — X, then a least area disc spanning
A would have to be disjoint from X. We are unable to prove this, so we
use a more combinatorial argument, which applies to any simple union of
embedded planes in M.

Proof. Let Abealoopin M —Z, and let g: D> — M be a (possibly
singular) 2-disc in M spanning A. Then g meets only a finite number of
planes of ¥ and we can assume that it meets them transversely. Thus
g~ '(X) is a union (not necessarily disjoint) of simple closed curves. Let
I1 denote a plane of X such that g—!(Il) is nonempty. Let y denote a
component of g~!(I), and let B denote the subdisc of D bounded by 7.
We will replace g by a map g’ which agrees with g on D — B and maps B
into I1. Further if U denotes the unbounded component of IT— g(y), we
ensure that g’(B) lies in IT— U. This can be done, as U with the interior
of a regular neighborhood of g(y) removed must be a half open annulus,
so that IT deformation retracts onto Il — U. We repeat this procedure for
each component of g~!(IT) and then perform a small homotopy supported
on a small neighborhood of the discs bounded by g~!(II) in order to to
obtain g;: D? — M such that g I(IT) is empty. If the 2-discs spanning the
components of g~!(IT) are nested, we use only the outermost components.

We claim that if g did not meet a particular plane [T, then neither does
g1. For suppose that our homotopy of g to g, introduces intersection with
IT in the subdisc B of D bounded by y. Then IT' must intersect IT in
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the compact region IT — U. As each component of ITNIT’ is noncompact,
it follows that I1 N IT’ crosses the frontier of IT — U, which is contained
in g(y). Thus g must meet II', contradicting our assumption. Now, by
repeating the above argument for each of the planes of £ which meets g,
we see that we can homotop g, fixed on A, to a map which does not meet
%. It follows that A is null-homotopic in M — X, so that each component
of M — X is simply connected, as required.

Let IT be a plane of X and let L denote the union of the double lines
II NIV, where IT varies over all planes of Z except IT itself.

Lemma 1.3. FEach component of Il — L is simply connected.

Proof. This can be proved in the same way as Lemma 1.2, but a
simpler argument is as follows. Let R be a component of IT— L. It suffices
to show that each simple closed curve A in R is null-homotopic in R. Now
A bounds a 2-disc D in I1. As the components of L are properly embedded
lines not meeting A, they must also not meet D. Thus D lies in R and the
lemma is proved.

Now let N(F) denote a regular neighborhood of f(F) in M.

Lemma 14. Let X denote the closure of a component of M — N(F).
Then

(i) the natural map n,(X) — n (M) is injective, and

(ii) X is a handlebody.

Proof. Conclusion (i) follows at once from Lemma 1.2.

Now let .S denote a component of 8 X. If § is a sphere, then the ir-
reducibility of M implies that X or M — X is a 3-ball. As f(F) lies in
M — X, we deduce that X must be a 3-ball, in this case. Suppose that
S is not a sphere. As M is not Haken, the natural map 7,(S) — 7, (M)
cannot be injective. Thus, by (i), the natural map =,(S) — 7;(X) also
cannot be injective, so that the Loop Theorem yields a 2-disc D; embed-
ded in X whose boundary is an essential circle on .S. Let X; be obtained
from X by removing the interior of a regular neighborhood of D,. If X is
connected, then 7;(X) is isomorphic to 7;(X,) x Z, so that 7, (X)) injects
into 7y (M). If X; has components ¥ and Y’, then 7,(X) is isomorphic
to (YY) 71 (Y’), so that 7;(Y) and 7,(Y”) inject into m,(M). Thus, as
for X, either each component of X| is a 3-ball or we can find a disc D,
embedded in X, with 8D, essential in 8 X;. By repeating this argument
until we reach X, which is a union of 3-balls, we see that X must be a
handlebody, as claimed.

Now we come to the proof of Theorem 1.1. In order to prove that A7
is homeomorphic to R3, it suffices to prove that any compact subset of A1
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lies in the interior of a 3-ball. The following technical result will prove
this. From now on, we assume that X is the preimage in Af of f(F).

Lemma 1.5. LetIly,--- ,I1, be a collection of planes of X, and let N(X,)
denote a regular neighborhood of X, = X — |Ji_, Il;. Then each component
of M — N(Z,) is irreducible and simply connected, and its closure is almost
compact. '

Proof of Theorem 1.1 from Lemma 1.5. Let C be a compact subset of
M. By enlarging C, if necessary, we can assume that C is connected. As
C meets only finitely many planes I}, --- ,II, of Z, it lies in M — N(Z,),
for some regular neighborhood N(Z,) of %,. Let X denote the closure of
the component of M — N(Z,) which contains C. The compactification
X of X given by the conclusion of Lemma 1.5 is irreducible and simply
connected, so it must be a 3-ball. Hence C lies in the interior of a 3-ball
in the interior of X, so that C lies in the interior of a 3-ball in A, as
required.

Note that this proof does not use the result of Meeks, Simon and Yau [8]
that the universal covering of a P2-irreducible 3-manifold is irreducible.
The irreducibility of A7 comes naturally, out of our arguments.

Proof of Lemma 1.5. 'We prove this by induction on #, starting with
n = 0, when X equals ¥. Lemma 1.3 shows that the closure of each
component of M — N(Z) is the universal covering of a handlebody. Thus
it is irreducible and almost compact. This can be proved easily, and also
is a special case of results of Waldhausen [17].

Now we suppose that Lemma 1.5 holds when # = k — 1 and will show it
holds when n = k. Let X denote the closure of a component of A/ — N(Z).
Then X is the union of manifolds Y;, each being the closure of a component
of M — N(Z;_,), together with manifolds R; x I, each R; being the closure
of a component of IT, — N(L), where L consists of all double lines in
IT;. Note that there may be infinitely many Y;’s and R;’s. Our induction
assumption tells us that each Y; is irreducible, simply connected and almost
compact. Lemma 1.3 implies that each R; is simply connected as this result
applies to any simple family of planes. Finally, Lemma 1.2 shows that X
is simply connected. Again, this is because the proof of Lemma 1.2 works
for any simple family of planes. It follows easily that X is irreducible,
and it follows from the result of Simon [14] given below that X is almost
compact, thus completing the proof of Lemma 1.5.

Simon’s result is the following.

Theorem 1.6 [14]. Let X be a 3-manifold formed from the disjoint union
of 3-manifolds Y; by gluing them in pairs along disjoint subsurfaces R; of
their boundary. If m\(X) is finitely generated, each Y; is almost compact,
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and each R; is incompressible in the two Y;’s in whose boundary it lies, then
X is almost compact.

2. The torus cover

In this section, we prove the following.

Theorem 2.1. Let M be a closed P*-irreducible 3-manifold such that
71 (M) contains a subgroup A isomorphic to Z x Z. Then the covering Mr
of M with n\(Mt) = A is almost compact.

Remark. M7y is P2-irreducible, because M is homeomorphic to R3, so
this result implies that M7 is a line bundle over the torus.

We pointed out in the introduction that this result follows from [14]
when M is Haken, and that if A/ is not Haken, then [13] shows that some
infinite cyclic subgroup of A4 is normal in 7; (M). In what follows, we will
always assume that M is not Haken.

Our aim is to argue very much as in §1. We start by choosing a least area
map of the torus 7 to M such that f, induces an isomorphism of 7z;(7)
to A. As M is not Haken, it must be orientable, so that f is automatically
2-sided. As in §1, the preimage in M of f(T') consists of area-minimizing
embedded planes, and the preimage in M7 of f(T) consists of the images
of these planes. For a given plane I, the elements of 4 which stabilize I1
form a subgroup S(IT). As S(IT) can only be isomorphic to {1}, Zor ZxZ,
the image in M7 of I is a possibly singular plane, annulus or torus. We
let £ denote the collection of all these surfaces in M. Also as in §1, we
can regularly homotop f to a general position map f’. For the purposes
of this section, the map f” is all we need, but in §3 we will use the least
area map S and its special properties.

Now assume that f is in general position. If each surface in Z is em-
bedded in M7, we can argue almost exactly as in §1. Unfortunately, this
need not be the case, but we will get around this problem by passing to a
suitable finite cover of M. First, we handle the case when each surface
of X is embedded in M7. The following is the precise analogue of Lemma
1.5.

Lemma 2.2. Suppose that each surface of X is embedded in Mr. Let
Iy,--- , I, be a collection of surfaces of X, and let N(X,) denote a regular
neighborhood of £, = £ — J;_, ;. Then each component of My — N(Z,)
is irreducible and has fundamental group injecting into A, and its closure is
almost compact.

Proof.  As in the proof of Lemma 1.5, we prove this by induction on
n, starting with n = 0, when Xy equals £. Lemma 1.3 implies that the
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closure X of a component of My — N(%) is a covering of a handlebody
and that 7, (X) injects into 4. As any subgroup of A4 is finitely generated,
it can be shown easily and it follows from [14] that X is almost compact.

Now we suppose that Lemma 2.2 holds when #» = k — 1 and will show
that it holds when n = k. Let X denote the closure of a component of
Mr — N(Zy). As in the proof of Lemma 1.5, X is the union of manifolds
Y;, each being the closure of a component of My — N(Z;_,), together with
manifolds R; x I, each R; being the closure of a component of I, — N(L),
where L consists of all double lines in IT;. Lemma 1.3 shows that 7;(R;)
injects into 7, (I1;) and hence injects into 4. Thus R; is incompressible in
the two Y;’s in whose boundary it lies. Our induction assumption implies
that each Y; is irreducible and almost compact. Thus X is irreducible.
In addition, Theorem 1.6 will show that X is almost compact, so long
as we know that z;(X) is finitely generated. But any component X of
the preimage of X in M is simply connected, by Lemma 1.2, as X is a
component of the complement of a simple union of planes. (Note that the
family of planes involved consists of the preimage of f(F) with infinitely
many planes removed.) Thus 7;(X) injects into 4 and so is certainly
finitely generated. This completes the proof of Lemma 2.2,

Proof of Theorem 2.1 in the case when all surfaces of £ are embedded in
M7. We will show that M7 must be homeomorphic to 7 x R by showing
that any compact subset C of Mt lies in the interior of a compact sub-
manifold of M7 which is homeomorphic to T x I and whose fundamental
group maps isomorphically to 4. First we enlarge C so that it is connected
and so that the natural map n,(C) — 7;(Mr) is surjective. Let I1;,--- ,I1,
be the surfaces of £ which meet C, and let X be the closure of the compo-
nent of M7 — N(X,) which contains C. As X contains C, the natural map
1(X) — m(Mr) is also surjective. Now Lemma 2.2 shows that X is irre-
ducible and almost compact, and that the natural map n,(X) — #;(M7)
is an isomorphism. It follows that the compactification of X is homeo-
morphic to 7 x I. As C lies in the interior of X, we can find a compact
submanifold of X which contains C in its interior, is homeomorphic to
T x I and whose fundamental group maps isomorphically to 7; (M7). This
completes the proof of Theorem 2.1 in this case.

We deal with the general case by using the result of Theorem 3.1 which
tells us that there is a finite covering of M7 in which the preimage of f(F)
consists entirely of embedded surfaces.

Proof of Theorem 2.1 assuming Theorem 3.1. Let M| denote a finite
covering of M7 in which the preimage of f(F) consists entirely of em-
bedded surfaces. The special case of Theorem 2.1 which we proved above
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shows that M, is almost compact. Now it follows from Tucker’s criterion
for almost compactness [16] that if a manifold has a finite cover which is
almost compact, it must also be almost compact. Thus M7 must be almost
compact, as required.

We end this section by briefly discussing the problems which arise if
one tries to prove the analogue of Theorem 2.1 for other surface groups,
i.e., if F is a closed surface not S? or P2, if 7;(M) contains 7,(F), and
if Mr denotes the cover of M with n;(Mp) = =;(F), then Mg should
be almost compact. Two problems arise if one tries to argue as in the
proof of Theorem 2.1. First, the surfaces which form the preimage X
of f(F) in Mr need not be embedded, and, when F is not the torus,
we do not know whether there must be a finite covering with all surfaces
embedded. Second, there seems to be no reason why the components of
Mp — X should have finitely generated fundamental group. All we know
is that the fundamental group is a subgroup of 7;(MF), but, when F is
not the torus, 7;(F) has many infinitely generated subgroups. Further,
even if the groups are finitely generated, there seems no reason why the
components of Mg — X, should continue to have this property when n > 1.

3. Finite covers of My

In this section, we prove

Theorem 3.1. Let M be a closed orientable irreducible 3-manifold such
that (M) contains a subgroup A isomorphic to ZxZ and A has an infinite
cyclic subgroup which is normal in m\(M), Let f: T — M be a least area
map such that f, induces an isomorphism of ©.(T) with A. Then there is
a finite cover My of My such that the preimage of My of f(T) consists of
embedded surfaces.

Our proof of this theorem stems from the observation that it is easy to
prove in the case when M is a Seifert fiber space. In this case, M can be
Seifert fibered so that the cyclic subgroup of 4 which is normal in 7,(M)
is carried by a fiber and f is then homotopic to a vertical map. Let P
denote the hyperbolic or Euclidean plane, as appropriate. Then there is a
discrete group I' of isometries of P such that the base orbifold of M can be
identified with P/I". We can assume that I" acts orientation preservingly
on P by replacing M by a double cover, if necessary. In this case, Theorem
3.1 is an immediate consequence of the following result.

Lemma 3.2. Let T be a discrete cocompact group of orientation preserv-
ing isometries of P, where P denotes E* or H?. Let B denote an element of
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T of infinite order and let | denote a geodesic in P which is invariant under
B. Then the following hold.

(i) If P = E?, then every translate of | by an element of T has simple
image in E*/{B).

(ii) If P = H?, then there exists an integer K > 1 such that every translate
of | by an element of T has simple image in H*/{BX).

Proof. (i) Let m be a translate of /. Then S"m is parallel to m for all
r, so that f"m equals m or is disjoint from m. Thus the image of m in
E?/{B) is simple, as required.

(ii) First, we note that if m is a translate of / which crosses /, then the
translates of m by powers of § must be disjoint. For m and 8”m cross [ at
the same angle, and if they intersected, we would obtain a triangle in H?
with the sum of two angles being z. If m is disjoint from /, it is possible
that Sm crosses m. However, because the effect of # (and of f~!) on the
circle at infinity is to move all points towards one end of /, it is clear that
there is an integer N such that $”m is disjoint from m, whenever |n| > N.
(Note that as I" is cocompact it contains no parabolic elements so that /
and m cannot have a common endpoint.) Of course, N will depend on m,
but if we choose my with minimal distance from / among all translates of
! which are disjoint from /, then the integer K = N(my) has the property
that 8"m is disjoint from m or coincides with m, whenever |r| > K and
for all translates m of /. Thus, in particular, every translate of / has simple
image in H2/{BX), as required.

The above geometric proof of Lemma 3.2 does not generalize easily to
the case of a torus in a 3-manifold. However, the following more com-
binatorial argument can be generalized. We give this argument to make
clear the simple ideas behind our proof of Theorem 3.1.

Lemma 3.3. Let P denote the plane with some Riemannian metric, and
let T denote a discrete group of orientation preserving isometries of P. Let.
B be an element of T of infinite order which leaves invariant a geodesic |
whose image in P|T is a shortest closed loop representing the conjugacy
class of B. Then there exists an integer K > 1 such that every transiate of |
by an element of T has simple image in P/{BX).

Proof. First, note that it follows from Lemma 1.4 of [2] that / is length
minimizing, i.e., that any compact subarc is shortest rel boundary. Now
we consider a translate m of / which crosses /. Then /Nm must be a single
point by Lemma 3.1 of [2]. Let y denote /nm. We claim that m has simple
image in P/(B). Suppose that m crosses f“m for some k # 0. Consider
all the points on m and on one side of / in which translates of m by powers
of B cross m, and choose the one which is nearest to y. We denote this
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by yx = m N f*¥m. Note that y, cannot equal y, for this would imply that
B* fixes y. Now consider the point %y, = fkm N % m in fxm. As we
cannot have Sy equal to y;, we must have By, strictly closer than yj
to f¥y. As B*y cannot equal y, we have the situation shown in Figure
3.4. The line % m enters the triangle formed by v,y and S*y at the
point B¥y,. As it cannot cross / or f¥m again, it must leave the triangle
by crossing m at a point w strictly closer than y; to y, which contradicts
our choice of y,.

We have just shown that those translates of / which cross / project to
embedded lines in P/(f). We let N denote the number of such lines. We
will show that if m is any translate of / disjoint from /, then either f¥m
is disjoint from m for all k > N, or fm equals m. It will then follow that
every translate of / has simple image in P/(8X), where K = N + 1, thus
proving Lemma 3.3.

Let m be a translate of / disjoint from / and suppose that #Xm crosses m
for some k > N. It follows from Lemma 3.5 below that fm, ?m,--- ,f¥m
and BN*!m all cross m.

If m = g/ and y denotes g~! B g, then we have y in I" such that y/, 2/, - - -,
y¥+1] all cross [. The definition of N shows that there are distinct integers
r and s, such that 1 < r,s < N + 1 and a nonzero integer ¢ such that
Bi(y"l) = y5I. Now one of r — s and s — r lies between 1 and N, so that
y"=3[ crosses [. Hence ¢’/ crosses /. Thus we have found a translate y/
of / such that "/ crosses / and crosses the translate of itself by g*, which
contradicts the first part of our proof of Lemma 3.3.
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We conclude from this contradiction that if m is a translate of / which
is disjoint from / then B*¥m cannot cross m for any k > N. Thus g*m
is disjoint from m or equal to m for all k > N. But if f¥m equals m,
then the image of m in P/{B*) is a shortest closed loop representing the
conjugacy class of %, because of the length minimizing property of m. The
image of this loop in P/{f) must be a shortest closed loop representing
the conjugacy class of B (by results of [2]), so it follows that Sm equals
m in this case. Thus either f¥m is disjoint from m for all k > N, or fm
equals m, as claimed. This completes the proof of Lemma 3.3 apart from
the following result which we quoted.

Lemma 3.5. [n the situation of Lemma 3.3, let m be a translate of 1
disjoint from | such that B*m crosses m for some k > 1. Then f"m crosses
mwhen 1 <r<k.

Proof. This is equivalent to showing that if » > 1 and f’fm N m is
empty, then S%m N m is empty whenever k > r. For, if ’m equals m,
then Bm must equal m, as in the proof of Lemma 3.3, and so f¥m must
also equal m, contradicting our hypothesis. This, in turn, is equivalent to
showing that if » and s are positive integers and m N f~"m is empty, then
Bim N B~"m must also be empty. This is what we will prove.

First, suppose that fSmNm is empty. Choose a shortest geodesic A from
! to m and denote the endpoints by x and y. Note that 4 exists because
! and m project to a closed loop in P/I', and there is a shortest path in
P/T" with endpoints on this loop in each homotopy class of such paths.
Let X denote AU m. Now f~"A must be disjoint from m, as otherwise
a subarc of 8774 would form a path from / to m which is shorter than
A. Also f~"4 is disjoint from A, as their endpoints are disjoint and any
interior intersections would contradict the facts that A is a shortest path
from / to m, and $~"4 is a shortest path from / to f~"m. Hence "X
is disjoint from X. Similarly, 85X is disjoint from X. Now X separates
the component of P —/ in which it lies, and 8~"X and #5X must lie in
different components of the complement of X, because f~"x and $°x do.
Thus "X and #°X must be disjoint. In particular, §~"m and £*m must
be disjoint, as required.

Now consider the case where f¥m meets m in a point which we denote
by z. Again, let A denote a shortest geodesic from / to m with endpoints
x and y. (See Figure 3.6.) This time, we let X denote the union of 4 and
the component of m — {y} which does not contain z. (It is important to
note that y and z are distinct points. If y and z coincided, then y would
simultaneously be a point of m and of #*m closest to x. Thus m and
B*m would meet A orthogonally at y, and so be tangent at y and hence
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B'm

FIGURE 3.6

coincident. This contradicts our assumption that m and f*m cross at z.)
As before, 77X is disjoint from X. Similarly, f*X is disjoint from X.
As before, it follows that 8~7m and B°m must be disjoint, completing the
proof of Lemma 3.5.

Now we come to the proof of Theorem 3.1, which we model after the
proof of Lemma 3.3. Let o generate an infinite cyclic subgroup of =, (7))
which is normal in 7 (M), and let § be an element of x;(T") such that o and
B generate a rank-two subgroup of n((7T). Without loss of generality, we
can suppose that o and 8 generate 7, (7). Let M, denote the covering of
M with 7, (M,) generated by a. Recall that the least areamap f: T — M
lifts to an embedding of T in M7, whose preimage in M, is an embedded
annulus 4. As M, is a regular covering of M, the complete preimage in
M, of f(F) consists of translates of 4 by the group I' = n;(M)/{a).

Lemma 3.7. There is a finite cover My of My such that all the double
curves of the preimage of f(T) in My are simple.

Proof. In M,, distinct translates of the annulus 4 are disjoint or in-
tersect transversely in a single essential (and embedded) circle, by Lemma
6.5 of [3]. As these double curves project to a finite number of double
curves in M, there is an upper bound 4 on the diameters of these curves
in M,. As M is compact, there is a power 8% of # which moves all points
of M, further than distance d. Clearly, all double curves in M, /{#*) will
be simple, as required.

By replacing M7 by this finite cover My, we can now assume that o and
B generate n;(T) and that all double curves in M7 are simple.
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Lemma 3.8. Let B be a translate of A which crosses A. Then B projects
to a simple annulus in My.

Proof. Suppose the result is false. Then there exists & # 0 such that
B*B equals B or crosses B. If f¥B equals B, then the stabilizers of 4 and
B intersect in a group isomorphic to Z x Z, so that Lemma 6.4(ii) of [3]
implies that 4 and B are disjoint or coincide. Since by our hypothesis B
crosses A, we see that f¥B cannot equal B.

Let C denote the circle B N A and, if "B crosses B, let C, denote
Bn B"B. :

Note that C, cannot meet A4, for this would imply that f”C meets C,
contradicting our assumption that all double curves in M7 are simple. As
in the proof of Lemma 3.3, we want to choose C, “nearest” to 4. Out of all
the C,’s on B, and on one side of 4, we choose one, C, which minimizes
the area of the annulus B’ in B bounded by C and C,. (This may not be
unique.) The circles C and g*C bound a compact annulus 4’ in 4, and
the circles f4“C and C, bound a compact annulus B” in #¥B. The union
of these annuli is an embedded torus X in M,. As the annulus B’ U B”
must be parallel to 4’ in M., we see that X bounds a solid torus.

Consider the circle fXC, = B*B n p2*B. We know that g*C; does
not meet 4, as C, does not meet 4. Also fXC, cannot meet C; since
all double curves in M7 are simple. As the area of the annulus S%B’ is
less than or equal to the area of B”, we deduce that fXC, lies in the
interior of B”. We conclude that 8% BN X contains a component, namely
B%C,, which is essential in M,. As X bounds a solid torus, it is clear that
B?* B N X must have another component .S which is also essential in AM,,.
Now 2B N A = p?C, so that f2*B cannot meet the annulus A’. Since
B?*BN BXB = B*C, the circle S must lie in the interior of the annulus B’.
But this implies that the circle S equals C,, = 2B N B, a contradiction
to our choice of Ci. Hence the proof of Lemma 3.8 is complete.

Proof of Theorem 3.1. Lemma 3.8 shows that any translate of 4 which
crosses A projects to a simple annulus in M. As in our proof of Lemma
3.3, we let N denote the number of such simple annuli in M. Let Bbe a
translate of 4 disjoint from A, and suppose that ¥ B crosses B for some
k > N. Lemma 3.9 below shows that 8B, 2B, ---, ¥+! B must all cross
B, and this yields a contradiction exactly as in our proof of Lemma 3.3.
As in that proof, we conclude that either ¥B is disjoint from B for all
k > N, or that 8B equals B. Theorem 3.1 follows by taking M, to be the
covering of M with fundamental group generated by o and V+!.

Lemma 3.9. Assume the hypotheses of Theorem 3.1 and that « and
generate n1(T) and all double curves in Mr are simple. Let B be a translate
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of A disjoint from A such that B*B crosses B for some k > 1. Then B'B
crosses B for 1 <r < k.

Proof. Asin Lemma 3.5, this is equivalent to showing that if  and s
are positive and BN S~ B is empty, then fBN B~ B must also be empty.
This is what we will prove.

First suppose that BN B is empty. We can find an annulus L properly
embedded in the closure N of a component of M, — (4 U B), and with
boundary components on 4 and B, both essential in M. Further, we can
choose L to be least area among all such annuli. Such a least area annulus
exists by applying the arguments of Theorem 1 of [9]. Their result does
not apply immediately as 8 N is not convex. However, 8N is a union of
minimal surfaces and this is sufficient as discussed in [11]. Also N is not
compact. This too is not a problem, for given any minimizing sequence
of maps of the annulus, we can apply appropriate powers of £ to ensure
that the end of the annulus on 4 always meets some fixed compact subset
of A. Also N has bounded curvatures, as M, covers the closed manifold
M, and this now allows the arguments of [9] to go ahead. Let C and D
denote the components of 8L on A and B respectively. Let X denote
L U B. Now "D is disjoint from B, so that the intersection of f~"L
with B must consist of essential circles. This uses the area minimizing
properties of B and 8—'L. If ~"LN B is nonempty, then a subannulus of
B~"L forms an annulus joining 4 to B with area less than that of L. This
contradiction shows that =L N B must be empty. Also f~"L is disjoint
from L. For 8~"C and C are distinct, and B~'D and D are disjoint so that
any intersection of #~"L and L would contradict their least area properties.
Thus #~"X and X are disjoint. Similarly X and X are disjoint. As in
Lemma 3.5, X separates the component of M, — 4 in which it lies, and
B°C and B~"C lie in different components of the complement of X. It
follows that 85X and S~ X are disjoint and hence that 8B and f~'B are
disjoint, as required.

If f*B meets B, we let Z denote their circle of intersection. Note that
Z and B°Z are disjoint, as all double curves in My are simple. Choose
an essential circle D on B disjoint from Z and f*Z, so that we can
find an annulus L’ properly embedded in the closure of a component of
M, — (4 U B), with one boundary component on 4 and the other equal to
D and such that L’ is disjoint from 85B and f~*B. (It seems natural to
assume that D must lie between Z and §~°Z on B, but we will not assume
this.) Next, we choose an annulus L to have least possible area among all
annuli properly embedded in the closure of a component of M, — (4U B)
and with one boundary component on 4 and the other equal to D. Such
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a least area annulus exists by Theorem 3 of [10]. As in the previous case,
the noncompactness of the closure of M, — (AU B) causes no problems. It
follows that L is disjoint from #~*B. For LN A~*B must consist of an even
number of essential circles, and this would contradict the area minimizing
properties of L and B unless L N B is empty. Now define X to be
the union of L and of the component ¥ of B — D not containing Z.

As "D is disjoint from B, the intersection of f~"L and B must consist
of essential circles. Further, the number of such circles is even, as 4 and
B~"B lie on the same side of B. But if f~"L N B contained two essential
circles, this would contradict the area minimizing properties of §~"L and
of B. We conclude that §~"LN B is empty. Now f~" LN L must consist of
essential circles and arcs with endpoints on 4. But any such intersection
curve would contradict the area minimizing properties of "L and L. We
conclude that 8~"L N L is empty. Thus 77X and X are disjoint.

It remains to show that 85X and X are disjoint. This will imply that 8°B
and B~'B are disjoint, as usual. As L is disjoint from BB, it follows that
B° L is disjoint from B. Now B°LN L must consist of essential circles and
arcs with endpoints on A, so, as before, we conclude that 8*L is disjoint
from L. Thus g*X N X is empty, as required. This completes the proof of
Lemma 3.9.
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